Dendritic spine morphogenesis and plasticity.

نویسندگان

  • Jocelyn Lippman
  • Anna Dunaevsky
چکیده

Dendritic spines are small protrusions off the dendrite that receive excitatory synaptic input. Spines vary in size, likely correlating with the strength of the synapses they form. In the developing brain, spines show highly dynamic behavior thought to facilitate the formation of new synaptic contacts. Recent studies have illuminated the numerous molecules regulating spine development, many of which converge on the regulation of actin filaments. In addition, interactions with glial cells are emerging as important regulators of spine morphology. In many cases, spine morphogenesis, plasticity, and maintenance also depend on synaptic activity, as shown by recent studies demonstrating changes in spine dynamics and maintenance with altered sensory experience.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic spine dynamics--a key role for kalirin-7.

Changes in the structure and function of dendritic spines contribute to numerous physiological processes such as synaptic transmission and plasticity, as well as behavior, including learning and memory. Moreover, altered dendritic spine morphogenesis and plasticity is an endophenotype of many neurodevelopmental and neuropsychiatric disorders. Hence, the molecular mechanisms that control spine p...

متن کامل

Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin

The morphogenesis of dendritic spines, the major sites of excitatory synaptic transmission in the brain, is important in synaptic development and plasticity. We have identified an ephrinB-EphB receptor trans-synaptic signaling pathway which regulates the morphogenesis and maturation of dendritic spines in hippocampal neurons. Activation of the EphB receptor induces translocation of the Rho-GEF ...

متن کامل

Allicin attenuates tunicamycin-induced cognitive deficits in rats via its synaptic plasticity regulatory activity

Objective(s): To illuminate the functional effects of allicin on rats with cognitive deficits induced by tunicamycin (TM) and the molecular mechanism of this process. Materials and Methods: 200–250 g male SD rats were divided into three groups at random: control group (n=12), TM group (5 μl, 50 μM, i.c.v, n=12), and allicin treatment group (180 mg/kg/d with chow diet, n=12). After 16 weeks of a...

متن کامل

Cadherin Regulates Dendritic Spine Morphogenesis

Synaptic remodeling has been postulated as a mechanism underlying synaptic plasticity, and cadherin adhesion molecules are thought to be a regulator of such a process. We examined the effects of cadherin blockage on synaptogenesis in cultured hippocampal neurons. This blockade resulted in alterations of dendritic spine morphology, such as filopodia-like elongation of the spine and bifurcation o...

متن کامل

Role of G Protein-Coupled Receptors in the Regulation of Structural Plasticity and Cognitive Function.

Cognition and other higher brain functions are known to be intricately associated with the capacity of neural circuits to undergo structural reorganization. Structural remodelling of neural circuits, or structural plasticity, in the hippocampus plays a major role in learning and memory. Dynamic modifications of neuronal connectivity in the form of dendritic spine morphology alteration, as well ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurobiology

دوره 64 1  شماره 

صفحات  -

تاریخ انتشار 2005